高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

医用钛合金表面改性及生物摩擦学性能研究进展

韩生 王媛 蔺华林 晏金灿 薛原 王宸宸

韩生,王媛,蔺华林,等. 医用钛合金表面改性及生物摩擦学性能研究进展[J]. 应用技术学报,2024,24(1):35-42. doi:  10.3969/j.issn.2096-3424.2024.01.002
引用本文: 韩生,王媛,蔺华林,等. 医用钛合金表面改性及生物摩擦学性能研究进展[J]. 应用技术学报,2024,24(1):35-42. doi:  10.3969/j.issn.2096-3424.2024.01.002
HAN Sheng, WANG Yuan, LIN Hualin, YAN Jincan, XUE Yuan, WANG Chenchen. Progress in surface modification and biotribological properties of medical titanium alloys[J]. J. Technol, 2024, 24(1): 35-42. doi: 10.3969/j.issn.2096-3424.2024.01.002
Citation: HAN Sheng, WANG Yuan, LIN Hualin, YAN Jincan, XUE Yuan, WANG Chenchen. Progress in surface modification and biotribological properties of medical titanium alloys[J]. J. Technol, 2024, 24(1): 35-42. doi: 10.3969/j.issn.2096-3424.2024.01.002

医用钛合金表面改性及生物摩擦学性能研究进展

doi: 10.3969/j.issn.2096-3424.2024.01.002
基金项目: 上海市晨光计划A类项目(2022CGA75);上海市科技创新行动启明星扬帆专项(22YF1447500);上海市产业协同创新项目(2021- cyxt1-kj37,XTCX-KJ-2022-70);上海应用技术大学引进人才基金项目(YJ2022–10);香料香精化妆品省部共建协同创新中心( 1021ZK230016015)资助
详细信息
    作者简介:

    韩生:韩 生(1973-),男,教授,博士。主要研究方向为先进功能润滑材料、摩擦学性能机理研究。E-mail:hansheng654321@sina.com

    王媛:王 媛(2003-),女,硕士研究生。E-mail:910059827@qq.com

    通讯作者:

    王宸宸(1993-),女,讲师,博士,主要研究方向为摩擦学性能机理研究。E-mail:wangchenchen76@163.com

  • 中图分类号: TB31

Progress in surface modification and biotribological properties of medical titanium alloys

  • 摘要: Ti-6Al-4V合金是目前应用最广泛的骨植入物材料,尤其应用在人工关节、骨椎弓根螺钉等植入物领域。然而,钛合金材料表面的耐磨性不足和生物惰性是种植体失效的重要因素。为了延长钛合金种植体的使用寿命,引入表面改性来提高钛合金的性能是一种可行的解决方案。综述了钛合金材料的特性及当前存在的问题,随后对其表面生物摩擦学性能和生物活性的研究现状进行了一系列分析,并进一步综述了钛合金表面的改性手段。结果发现,通过对钛合金进行表面改性,同时提高其表面的生物摩擦学性能和生物活性,在基础科学技术上仍存在一定的挑战。因此,后续研究工作中应着重考虑钛合金表面多功能化处理设计探讨改性后的作用机理,这具有重要的理论意义和应用价值。
  • [1] RACK H J,QAZI J I. Titanium alloys for biomedical applications[J]. Materials Science and Engineering C,2006(26): 1269-1277.
    [2] YAVARI S A,STOK J V D,CHAI Y C,et al. Bone regeneration performance of surface treated porous titanium[J]. Biomaterials,2014,35(24): 6172-6181. doi:  10.1016/j.biomaterials.2014.04.054
    [3] MCCARTY C P,PARK S H,HO N C,et al. Taper material loss in total hip replacements:is it affected by joint friction[J]. The Journal of Bone & Joint Surgery,2022,104(9): 796-804.
    [4] GEETHA M,SINGH A K,ASOKAMANI R,et al. Ti based biomaterials,the ultimate choice for orthopaedic implants : a review[J]. Progress in Materials Science,2009,54(3): 397-425. doi:  10.1016/j.pmatsci.2008.06.004
    [5] LIU Y,WANG F,YING J,et al. Biomechanical analysis and clinical observation of 3D-printed acetabular prosthesis for the acetabular reconstruction of total hip arthroplasty in Crowe III hip dysplasia[J]. Frontiers in Bioengineering and Biotechnology,2023(11): 1219745.
    [6] NIINOMI M,AKAHORI T,TAKEUCHI T,et al. Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications[J]. Materials Science and Engineering:C,2005,25(3): 417-425.
    [7] LIN N, LI D, ZOU J, et al. Surface texture-based surface treatments on Ti-6Al-4V titanium alloys for tribological and biological applications: a mini review[J]. Materials (Basel) 2018, 11(4): 487.
    [8] BANERJEE D,WILLIAMS J. Perspectives on titanium science and technology[J]. Acta Materialia,2013,61(3): 844-879. doi:  10.1016/j.actamat.2012.10.043
    [9] CARAPETO A,SERRO A,NUNES B,et al. Characterization of two DLC coatings for joint prosthesis:the role of albumin on the tribological behavior[J]. Surface and Coatings Technology,2010,204(21-22): 3451-3458. doi:  10.1016/j.surfcoat.2010.04.022
    [10] KHORASANI A,GOLDBERG M,DOEVEN E,et al. Titanium in biomedical applications properties and fabrication:a review[J]. Journal of Biomaterials and Tissue Engineering,2015,5(8): 593-619. doi:  10.1166/jbt.2015.1361
    [11] QU J,BLAU P,WATKINS T,et al. Friction and wear of titanium alloys sliding against metal,polymer,and ceramic counterfaces[J]. Wear,2005,258(9): 1348-1356. doi:  10.1016/j.wear.2004.09.062
    [12] SHI W,DONG H. Improvement in the tribological properties of UHMWPE sliding against Ti-6Al-4V by surface modification[J]. Journal of Shanghai University,2005(9): 164-171.
    [13] PAN Y,XIONG D,MA R. A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy[J]. Wear,2007,262(7-8): 1021-1025. doi:  10.1016/j.wear.2006.10.005
    [14] GORIAINOV V,COOK R,LATHAM J,et al. Bone and metal:an orthopaedic perspective on osseointegration of metals[J]. Acta Biomaterialia,2014,10(10): 4043-4057. doi:  10.1016/j.actbio.2014.06.004
    [15] DAVIM J,MARQUES N. Dynamical experimental study of friction and wear behaviour of bovine cancellous bone sliding against a metallic counterface in a water lubricated environment[J]. Journal of Materials Processing Technology,2004,152(3): 389-394. doi:  10.1016/j.jmatprotec.2004.04.420
    [16] YU H, CAI Z, ZHOU Z, et al. Fretting behavior of cortical bone against titanium and its alloy[J]. Wear, 2005, 259(7-12): 910-918. .
    [17] 陈景杨,洪泽鑫,陈亮,等. 3D打印技术在骨科医疗器械中的研究进展[J]. 中国医疗器械杂志,2023,47(5): 533-538. doi:  10.3969/j.issn.1671-7104.2023.05.013
    [18] 张家振,翟豹,阿茹罕,等. 骨科植入器械动物研究关注点探讨[J]. 中国医疗器械杂志,2023,47(5): 550-556.
    [19] WANG Q,GE S. Comparison of biotribology of swine compact bone against UHMWPE[J]. Journal of China University of Mining and Technology,2007,17(1): 133-137. doi:  10.1016/S1006-1266(07)60028-5
    [20] MOLINARI A,STRAFFELINI G,TESI B,et al. Dry sliding wear mechanisms of the Ti-6Al-4V alloy[J]. Wear,1997(208): 105-112. doi:  10.1016/S0043-1648(96)07454-6
    [21] STRAFFELINI G,MOLINARI A. Dry sliding wear of Ti–6Al–4V alloy as influenced by the counterface and sliding conditions[J]. Wear,1999(236): 328-338.
    [22] SAHASRABUDHE H,BANDYOPADHYAY A. In situ reactive multi-material Ti-6Al-4V calcium phosphate-nitride coatings for bio-tribological applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018(85): 1-11.
    [23] XU Y,LI Z,ZHANG G,et al. Electrochemical corrosion and anisotropic tribological properties of bioinspired hierarchical morphologies on Ti-6Al-4V fabricated by laser texturing[J]. Tribology International,2019(134): 352-364.
    [24] WANG C,HU H,LI Z,et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating[J]. ACS Applied Materials & Interfaces,2019,11(43): 39470-39483.
    [25] RIVEIRO A,MAÇON A,DEL VAL J,et al. Laser surface texturing of polymers for biomedical applications[J]. Frontiers in Physics,2018(6): 0016.
    [26] SKEDUNG L,ARVIDSSON M,CHUNG J,et al. Feeling small:exploring the tactile perception limits[J]. Scientific Reports,2013(3): 02617.
    [27] ZHANG K,BADREDDINE H,SAANOUNI K . Ductile fracture prediction using enhanced CDM model with Lode angle-dependency for titanium alloy Ti-6Al-4V at room temperature[J]. Journal of Materials Processing Technology,2022(27)-116462.
    [28] JIANG N,GUO Z,SUN D,et al. Promoting osseointegration of Ti implants through micro/nanoscaled hierarchical Ti phosphate/Ti oxide hybrid coating[J]. ACS Nano,2018,12(8): 7883-7891. doi:  10.1021/acsnano.8b02227
    [29] KURELLA A,DAHOTRE N. Surface modification for bioimplants:the role of laser surface engineering[J]. Journal of Biomaterials Applications,2005,20(1): 5-50. doi:  10.1177/0885328205052974
    [30] LIU X,CHU P,DING C. Surface modification of titanium,titanium alloys,and related materials for biomedical applications[J]. Materials Science and Engineering:R:Reports,2004,47(3-4): 49-121.
    [31] JEMAT A,GHAZALI M,RAZALI M,et al. Surface modifications and their effects on titanium dental implants[J]. BioMed Research International,2015(2015): 791725.
    [32] KUMARI R,SCHARNWEBER T,PFLEGING W,et al. Laser surface textured titanium alloy (Ti–6Al–4V)-part II-studies on bio-compatibility[J]. Applied Surface Science,2015(357): 750-758.
    [33] ARSLAN A,MASJUKI H,KALAM M,et al. Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance:a review[J]. Critical Reviews in Solid State and Materials Sciences,2016,41(6): 447-481. doi:  10.1080/10408436.2016.1186597
    [34] YU C,YU H,LIU G,et al. Understanding topographic dependence of friction with micro- and nano-grooved surfaces[J]. Tribology Letters,2013,53(1): 145-156.
    [35] MAYER T, ADAMS D, HODGES V, et al. Focused ion beam techniques for fabricating geometrically complex components and devices[M]. Sandia National Laboratories, 2004.
    [36] NAKANO M,ANDO Y. Recent studies on the application of microfabrication technologies for improving tribological properties[J]. Lubrication Science,2011,23(3): 99-117. doi:  10.1002/ls.135
    [37] CHANG W,SUN J,LUO X,et al. Investigation of microstructured milling tool for deferring tool wear[J]. Wear,2011,271(9-10): 2433-2437. doi:  10.1016/j.wear.2010.12.026
    [38] BAHARIN A,GHAZALI M,WAHAB J. Laser surface texturing and its contribution to friction and wear reduction: a brief review[J]. Industrial Lubrication and Tribology,2016,68(1): 57-66. doi:  10.1108/ILT-05-2015-0067
    [39] AMANOV A,TSUBOI R,OE H,et al. The influence of bulges produced by laser surface texturing on the sliding friction and wear behavior[J]. Tribology International,2013(60): 216-223.
    [40] WU Z,XING Y,HUANG P,et al. Tribological properties of dimple-textured titanium alloys under dry sliding contact[J]. Surface and Coatings Technology,2017(309): 21-28.
    [41] ARENAS M,AHUIR-TORRES J,GARCÍA I,et al. Tribological behaviour of laser textured Ti-6Al-4V alloy coated with MoS2 and graphene[J]. Tribology International,2018(128): 240-247.
    [42] MUKHERJEE S,DHARA S,SAHA P. Laser surface remelting of Ti and its alloys for improving surface biocompatibility of orthopaedic implants[J]. Materials Technology,2017,33(2): 106-118.
    [43] LIU B,YU W L,XIAO G Y,et al. Comparative investigation of hydroxyapatite coatings formed on titanium via phosphate chemical conversion[J]. Surface & Coatings Technology,2021(413): 127093.
    [44] ALEXANDRE,CUNHA,FAROUK O,et al. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces[J]. Nanomedicine,2015,10(5): 725-739. doi:  10.2217/nnm.15.19
    [45] STANGO ARUL XAVIER,VIJAYALAKSHMI U. Electrochemically grown functionalized multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity[J]. Colloids Surface Biointerfaces,2018(171): 186-196.
    [46] KIZUKI T,TAKADAMA H,MATSUSHITA T,et al. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment[J]. Acta Biomaterialia,2010,6(7): 2836-2842. doi:  10.1016/j.actbio.2010.01.007
    [47] HUANG Y,LUO Q,LI X,et al. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium[J]. Acta Biomaterialia,2012,8(2): 866-877. doi:  10.1016/j.actbio.2011.10.020
    [48] HORNBERGER H,VIRTANEN S,BOCCACCINI A. Biomedical coatings on magnesium alloys: a review[J]. Acta Biomaterialia,2012,8(7): 2442-2455. doi:  10.1016/j.actbio.2012.04.012
    [49] JUNG H,CHOI Y,JEONG J,et al. Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to improve osseointegration[J]. RSC Advances,2016,6(32): 26719-26724. doi:  10.1039/C6RA03905G
    [50] HAN L,SUN H,TANG P,et al. Mussel-inspired graphene oxide nanosheet-enwrapped Ti scaffolds with drug-encapsulated gelatin microspheres for bone regeneration[J]. Biomaterials Science,2018,6(3): 538-549. doi:  10.1039/C7BM01060E
    [51] DE MELLO J D B,GONCALVES J L,COSTA H L. Influence of surface texturing and hard chromium coating on the wear of steels used in cold rolling mill rolls[J]. Wear,2013,302(1-2): 1295-1309. doi:  10.1016/j.wear.2013.02.006
    [52] YUAN S, LIN N M, ZOU J J, et al. IIn-situ fabrication of gradient titanium oxide ceramic coating on laser surface textured Ti6Al4V alloy with improved mechanical property and wear performance[J]. JVacuum,2020(85): 109327.
    [53] DENG J,PANG S,WANG C,et al. Biotribological properties of Ti-6Al-4V alloy treated with self-assembly multi-walled carbon nanotube coating[J]. Surface and Coatings Technology,2019(382): 125169.
    [54] KHUN N,LI Z,KHOR K,et al. Higher in-flight particle velocities enhance in vitro tribological behavior of plasma sprayed hydroxyapatite coatings[J]. Tribology International,2016(103): 496-503.
    [55] ASGAR H,DEEN K,RAHMAN Z,et al. Functionalized graphene oxide coating on Ti-6Al-4V alloy for improved biocompatibility and corrosion resistance[J]. Materials Science and Engineering:C,2019(94): 920-928.
    [56] 孙疆,石章智,李亚庚,等. 面向骨科植入应用的可降解锌基材料研究进展[J]. 材料工程,2022,50(11): 11-23.
    [57] MOLAEI A,AMADEH A,YARI M,et al. Structure,apatite inducing ability,and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate[J]. Materials Science and Engineering:C,2016(59): 740-747.
    [58] TRIPATHI K,GYAWALI G,AMANOV A,et al. Synergy effect of ultrasonic nanocrystalline surface modification and laser surface texturing on friction and wear behavior of graphite cast iron[J]. Tribology Transactions,2017,60(2): 226-237. doi:  10.1080/10402004.2016.1158339
    [59] ZHAO D P, TANG J C , NIE H M,et al. Macro-micron-nano-featured surface topography of Ti-6Al-4Valloy for biomedical applications[J]. Rare Metals,2018,37(12): 1055-1063.
    [60] ZHANG Z,XU R,YANG Y,et al. Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to improve osseointegration[J]. Journal of Nanobiotechnology,2021(19): 1-16.
    [61] DENG J, PANG S, WANG C, et al. Biotribological properties of Ti-6Al-4V alloy treated with self-assembly multi-walled carbon nanotube coating[J]. Surface and Coatings Technology, 2019(382): 125169.
    [62] CHEN K,LIU S,WU X,et al. Mussel-inspired construction of Ti-6Al-4V hydrogel artificial cartilage material with high strength and low friction[J]. Materials Letters,2020(265): 127421.
    [63] 牛一旭,逄显娟,赵若凡,等. 利用激光表面织构改善钛锆合金乏油润滑摩擦学性能[J]. 河南科技大学学报(自然科学版),2022,43(5): 1-6.
    [64] MENG L,WANG A,WU Y,et al. Blind micro-hole array Ti-6Al-4V templates for carrying biomaterials fabricated by fiber laser drilling[J]. Journal of Materials Processing Technology,2015(222): 335-343.
    [65] KURELLA A,DAHOTRE N. Laser induced multi-scale textured zirconia coating on Ti-6Al-4V[J]. Journal of Materials Science:Materials in Medicine,2006,17(6): 565-572. doi:  10.1007/s10856-006-8941-3
    [66] JIN L,LI Y,LIU C,et al. Friction mechanism of DLC/MAO wear-resistant coatings with porous surface texture constructed in-situ by micro-arc oxidation[J]. Surface and Coatings Technology,2023(473): 130010.
  • [1] 陆伟, 单小龙, 徐春, 白清领, 尤伟任, 钱蒋锋.  形变Al-Fe-Mn铝合金的再结晶激活能研究, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2023.01.010
    [2] 吴文雨, 唐剑锋, 郑思俊, 柯紫妍, 耿春女.  城市源生物炭对城市土壤溶解性有机质及重金属有效态的影响, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2023.03.008
    [3] 王帅, 钱洪祥, 高晶, 王宇, 贾润萍.  纳米La2O3/TPU复合弹性体的制备及生物性能, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.04.002
    [4] 滕庭庭, 梁继东.  PAHs降解功能菌的识别与生物强化修复PAHs污染土壤研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.01.003
    [5] 刘五星, 侯金玉, 王贝贝.  煤化工场地有机污染土壤生物修复研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.01.002
    [6] 赵冰雪, 聂功平, 张小惠, 黄清俊.  芝麻AP2/ERF基因家族生物信息学鉴定与分析, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.04.018
    [7] 章亭洲, 徐志伟, 张建泽, 朱廷恒.  固态发酵生物反应器及其在有机污染物降解菌扩繁中的应用, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.012
    [8] 李法云, 吝美霞, 李晓桐, 王玮, 王效举.  生物炭基复合材料制备及其在有机污染环境修复中的应用, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.003
    [9] 许科伟, 顾磊, 郑旭莹, 王彪, 郭鹏.  化学氧化强化生物堆修复石油污染土壤研究, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.009
    [10] 李婷婷, 吴迪, 辛亮, 王恩彪, 赵紫钰, 彭湃.  石油污染土壤电动-微生物修复技术研究, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.010
    [11] 张玉玲, 王吉利, 刘婷, 白雪, 石宇佳, 丁杨, 宋和威.  土著微生物原位修复典型有机污染地下水研究展望, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.005
    [12] 许盼, 李凯, 陈肖晓, 李佩君, 浦跃武.  固定化微生物降解PAHs的研究进展, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.008
    [13] 高大文, 赵欢, 李莹, 唐腾, 白雨虹, 向韬, 李钰琪.  有机污染场地生物修复技术挑战与展望, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.002
    [14] 周启星, 展海银.  石油及石化污染场地生物修复技术进展与展望, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.001
    [15] 刘维涛, 李剑涛, 郑泽其, 李法云.  微生物固定化技术修复石油烃污染土壤, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.007
    [16] 石丽芳, 吝美霞, 李法云, 高明, 王玮, 周纯亮.  生物炭固定化微生物对石油烃污染土壤酶活性与修复效果的影响, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.013
    [17] 侯峰, 裴继红, 黄战鏖.  一种八氢香豆素衍生物的合成及香气研究, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2020.04.006
    [18] 于晓庆.  肺腺癌相关长链非编码RNA生物标志物识别, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2020.04.012
    [19] 金薪盛, 何晓.  基于分块量子化学方法的生物大分子核磁共振化学位移计算, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2019.03.013
    [20] 孙亚琴, 潘嘉祺, 陈麒忠, 杜超时, 朱若愚.  表面活性剂对水玻璃砂性能的影响, 应用技术学报. doi: 10.3969/ji.ssn.2096-3424.2017.01.010
  • 加载中
计量
  • 文章访问数:  111
  • HTML全文浏览量:  36
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 网络出版日期:  2024-01-26
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回