高级检索
李鹏飞,刘吉波,章平毅,等. 8万 t/a戊烷工艺换热网络优化设计[J]. 应用技术学报,2024,24(2):160-166.. DOI: 10.3969/j.issn.2096-3424.2022.032
引用本文: 李鹏飞,刘吉波,章平毅,等. 8万 t/a戊烷工艺换热网络优化设计[J]. 应用技术学报,2024,24(2):160-166.. DOI: 10.3969/j.issn.2096-3424.2022.032
LI Pengfei, LIU Jibo, ZHANG Pingyi, MAO Haifang, JIN Miaomiao. Optimization of heat exchange network for 80 000 t/a pentane process[J]. Journal of Technology, 2024, 24(2): 160-166. DOI: 10.3969/j.issn.2096-3424.2022.032
Citation: LI Pengfei, LIU Jibo, ZHANG Pingyi, MAO Haifang, JIN Miaomiao. Optimization of heat exchange network for 80 000 t/a pentane process[J]. Journal of Technology, 2024, 24(2): 160-166. DOI: 10.3969/j.issn.2096-3424.2022.032

8万 t/a戊烷工艺换热网络优化设计

Optimization of heat exchange network for 80 000 t/a pentane process

  • 摘要: 针对80 000 t/a戊烷工艺,采用Aspen Plus软件对生产工艺能耗进行分析。采用热泵精馏对工艺流程进行节能设计,并进一步利用夹点技术对换热网络进行集成和优化。优化结果表明:优化后换热网络共回收热量8509 kW,热公用工程节省54.9%,冷公用工程节省70.6%。同时减少了约67.5%的工艺换热面积,优化后总费用下降约35.2%。

     

    Abstract: Aspen Plus software was used to simulate the 80 000 t/a raffinate pentane hydrogenation process. The heat exchange network was optimized by heat pump distillation and pinch technology. After optimization, about 8509 kW of energy is recovered. The heat utility is reduced by 54.9%, the cold utility is reduced by 70.6%, and the heat exchange area is reduced by 67.5%, resulting in 35.2% decrease in total investment cost.

     

/

返回文章
返回