高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机污染场地生物修复技术挑战与展望

高大文 赵欢 李莹 唐腾 白雨虹 向韬 李钰琪

高大文,赵欢,李莹,等. 有机污染场地生物修复技术挑战与展望[J]. 应用技术学报,2021,21(4):293-305. doi:  10.3969/j.issn.1004-3810.2021.04.002
引用本文: 高大文,赵欢,李莹,等. 有机污染场地生物修复技术挑战与展望[J]. 应用技术学报,2021,21(4):293-305. doi:  10.3969/j.issn.1004-3810.2021.04.002
GAO Dawen, ZHAO Huan, LI Ying, TANG Teng, BAI Yuhong, XIANG Tao, LI Yuqi. Challenges and Prospects of Bioremediation Technology for Organic Contaminated Sites[J]. J. Technol, 2021, 21(4): 293-305. doi: 10.3969/j.issn.1004-3810.2021.04.002
Citation: GAO Dawen, ZHAO Huan, LI Ying, TANG Teng, BAI Yuhong, XIANG Tao, LI Yuqi. Challenges and Prospects of Bioremediation Technology for Organic Contaminated Sites[J]. J. Technol, 2021, 21(4): 293-305. doi: 10.3969/j.issn.1004-3810.2021.04.002

有机污染场地生物修复技术挑战与展望

doi: 10.3969/j.issn.1004-3810.2021.04.002
基金项目: 国家重点研发计划(2020YFC1808800)资助
详细信息
    作者简介:

    高大文(1967-),男,博士,教授,主要研究方向为环境生态修复。E-mail:gaodawen@bucea.edu.cn

  • 中图分类号: X53

Challenges and Prospects of Bioremediation Technology for Organic Contaminated Sites

  • 摘要: 中国大中城市化工企业的大规模搬迁,致使大量工业污染场地遗留在城市周边。研发高效和成本低廉的修复技术,对于实现我国工业污染场地的绿色可持续发展具有重要意义。通过对现有物化和生物修复技术进行综述,指出生物技术在有机污染场地修复中的重要性,并从土壤环境和微生物两方面,分别总结了当前有机污染场地修复面临的挑战,并在高效、持久、稳定的菌剂和酶制剂,以及具有协同效应的生物修复助剂与微生物菌剂配合使用等方面,对有机污染场地生物修复技术研发提出建议。
  • 图  1  近5年物理、化学和生物修复有机工业污染场地文献占比

    Figure  1.  Percentage of literature on physical, chemical and biological remediation of organic industrial contaminated sites in the last five years

    图  2  微生物代谢机理图

    Figure  2.  Microbial metabolic mechanism diagram

    图  3  有机污染物代谢机理示意图

    Figure  3.  Schematic diagram of the metabolic mechanism of organic pollutants

    表  1  国内外化工污染场地修复工程项目应用技术分析

    Table  1.   Domestic and foreign chemical contaminated site remediation engineering project application technology analysis

    项目名称 污染物的种类 修复技术 来源
    北京市化工二厂污染场地修复 氯乙烷、氯乙烯、氯仿等 异位热脱附、常温解吸 [17]
    北京市东方化工厂污染场地修复 苯系物、多环芳烃、石油烃 多相抽提、气相抽提、原位氧化
    上海市桃浦区某化工污染场地修复 多环芳烃、苯系物 固化/稳定化、化学氧化、热脱附
    广州油制气厂污染土壤修复项目 苯系物、多环芳烃、石油烃 异位热脱附、原位化学氧化
    美国犹他州图埃勒县军方油库 三硝基甲苯、环三亚甲基三硝铵 异位化学还原技术 [1,8]
    美国新泽西州工业乳胶超级基金场地 有机氯农药、多氯联苯、多环芳烃 异位热脱附
    美国加利福尼亚州某工业场地 三氯乙烯 多相抽提技术
    美国格罗夫兰威尔斯某工业场地 挥发性有机化合物(VOC)、三氯乙烯(TCE)、
    顺式1,2-二氯乙烯(顺式1,2-DCE)
    原位热处理、气相抽提技术
    下载: 导出CSV

    表  2  能够降解有机物的细菌和真菌

    Table  2.   Bacteria and fungi capable of degrading organic matter

    菌株 多环芳烃(菲、蒽、芘、芴、萘、荧蒽、
    苯并芘等)、石油烃、氯代烃
    降解条件 降解率 来源
    细菌 Dyadobacter jiangsuensis MTCC 12851 氯代烃 30 ℃, 10 d aqueous medium-80.36% [32]
    pH=8.2 ± 0.34, 30 d soil environment 76.93%
    Pseudomonas sp.LX2 芘(50 mg/L) 30 ℃, pH=6~7, 23 d 32. 1% [33]
    CSW2 苯并芘(10 mg/L) 35 ℃, pH=7, 15 d 78.8% [34]
    PheN9 菲(139.6 μmol/L) 30 ℃, 16 d 54% [35]
    Desulfobacteraceae 30 ℃, 12 weeks [36]
    Rhodopseudomonas sp.
    strain PSB07-21
    氰戊菊酯(100 mg/L) pH=7, 30 ℃ [37]
    pseudomonas aeruginosa NY3 十六烷(30 μL) pH=7.5, 30 ℃, 16 h 28.01% [38]
    十六烷(30 μL), 戊二酸(0.1 mol/L) 11.72%
    TCC-2 菲(20 mg/kg) 128 d 76.61% [39]
    三氯二苯脲(20 mg/kg) 77.20%
    Microbacberium sp. strain 苯并芘(1 g/L) 35 ℃, 10 d 84.20% [34]
    Paracoccus sp. Strain HPD-2 苯并芘(10 mg/L) 30 ℃, 7 d
    60.00% [40]
    Streptomyces sp. Hlh9 石油 30 ℃, 7 d 97.50% [41]
    Streptomyces sp. Zah8 石油 30 ℃, 7 d 85.50% [41]
    Pseudaminobacter salicylatoxidans CGMCC 1.17248 啶虫脒(1.0 mmol/L) 30 ℃, 14 h [42]
    Methylovorus sp. XLL03 P, P’-DDT 30 ℃, 4 d, pH=6 50.10% [43]
    pseudomonas
    aeruginosa
    四氯联苯 30 ℃, 7 d, pH=7.5 58.50% [44]
    Mycobacterium spp. 菲、荧蒽、芘、蒽、苯并芘 30 ℃, 60 d, pH=7 90.00% [45]
    真菌 Aspergillus oryzae MF13 30 ℃, 4 d 65.00% [46]
    Aspergillus flavipes QCS12 30 ℃, 4 d 87.00% [46]
    Coriolopsis
    byrsina strain APC5
    25 ℃, 18 d, pH=6 51.85% [47]
    Phlebia lindtneri GB1027 2,2-双(4-氯苯基)-1,1,1-三氯乙烷 30 ℃, 30 d, pH=6.5 70.90% [48]
    Trichoderma longibrachiatum FLQ-4 萘、苊、芴、菲、蒽、荧蒽、芘、苯并蒽、
    苯并荧蒽、苯并芘、苯并荧蒽\苯并芘、
    茚并芘、二苯并蒽、氯乙烯
    28 ℃, 30 d 76.30% [49]
    Pleurotus ostreatus 苯并蒽 28 ℃, 84 d 39.20% [50]
    Aspergillus terreus 苯并芘 30 ℃, 9 d 38.4% [51]
    Hypoxylon fragiforme 苊、蒽、芴、1-甲基芴、1-甲基萘、2-甲基萘、
    菲、芘、邻苯二酚
    (25±1) ℃, 21 d 90.30% [52]
    Coniophora puteana 苊、蒽、芴、1-甲基芴、1-甲基萘、2-甲基萘、
    菲、芘、邻苯二酚
    (25±1) ℃, 21 d 80.00% [52]
    下载: 导出CSV

    表  3  微生物降解有机污染物代谢机理

    Table  3.   Metabolic mechanism of microbial degradation of organic pollutants

    污染物质 菌种 代谢物 代谢途径 反应条件 反应效果 参考
    文献
    菲、蒽、芘、
    苯并芘
    Comamonas testosteroni CT1、Comamonas testosteroni KF-1、Pseudomonas putida LN12、Vibrio H5、Buttiauxella S19-1,Acinetobacter calcoaceticus LM1、Pseudomonassp. LY1、Pseudomonas stutzeri JP1、Rhodococcussp. P14 邻苯二甲酸二丁酯 双加氧酶、脱氢酶 36 h,
    pH= 6.5~7.5,27 ℃
    >83% [56]
    菲、芴 Ganoderma B-18、INIFA T-4148、UH-B、INIFA T-4149、 UH-D,INIFA T 4150 UH-E、 INIFA T 4151、 UH-G,INIFA T 4152、UH-L、INIFA T 4153、 UH-M,INIFA T 4154 96 h, 36 ℃ 菲:70%
    芴:60%
    [70]
    菲、蒽 Pleurotus ostreatus D1、Agaricus bisporus F-8 菲醌、蒽醌、 邻苯二甲酸 漆酶 、多功能氧化酶 [71]
    蒽、菲、芴 L. gongylophorus strain FF-2006 蒽酮、蒽醌 漆酶 24 h,
    pH=6.0,30 ℃
    蒽:72.1%
    菲:25.3%
    芴:40.3%
    [72]
    2,2-双(4-氯苯基)-1,1,1-三氯乙烷 Stenotrophomonassp. DDT-1 2,2-双(4-氯苯基)-1,1,1-二氯乙烯、二氯二苯二氯代甲烷 pH=7.0,35 ℃ [73]
    多氯联苯 Pleurotus pulmonarius LBM 105 漆酶、多功能氧化酶、短链脱氢酶、醛酮还原酶 pH=4.6,28 ℃ >80% [74]
    十六烷 P. aeruginosa NY3 短链烷烃 苯那津化合物 24 h,
    pH=7.0,30 ℃
    [75]
    四溴双酚A Pseudomonassp. fz 三溴双酚A、二溴双酚A、双酚A、2-溴苯酚、4-异丙烯-2,6-二溴苯酚 胞外H2O2L-氨基酸氧化酶 7 d,pH=7.2,35 ℃,
    150 r/min
    >90% [55]
    下载: 导出CSV
  • [1] MEGHARAJ M,NAIDU R. Soil and brownfield bioremediation[J]. Microbial Biotechnology,2017,10(5): 1244-1249. doi:  10.1111/1751-7915.12840
    [2] LU H,QIAN L B,YAN J C,et al. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater[J]. Environmental Science and Pollution Research,2016,23(2): 1234-1245. doi:  10.1007/s11356-015-5335-4
    [3] SHI Z M,LIU J H,TANG Z W,et al. Vermiremediation of organically contaminated soils:Concepts,current status,and future perspectives perspectives[J]. Applied Soil Ecology,2020: 147:103377.
    [4] ZHANG H,MA D Y,QIU R L,et al. Non-thermal plasma technology for organic contaminated soil remediation:A review[J]. Chemical Engineering Journal,2017,313: 157-170. doi:  10.1016/j.cej.2016.12.067
    [5] 环境保护部. 国土资源部 (2014) 全国土壤污染状况调查公报[R]. 中国: 国土资源部, 2014.
    [6] 中华人民共和国国务院. 国发〔2016〕31号, 国务院关于印发土壤污染防治行动计划的通知[S]. 中国: 国务院, 2016.
    [7] 全国人民代表大会常务委员会中华人民共和国土壤污染防治法[L]. 2018.
    [8] CHEN M,XU P,ZENG G G,et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons,petroleum,pesticides,chlorophenols and heavy metals by composting:Applications,microbes and future research needs[J]. Biotechnology Advances,2015,33(6): 745-755. doi:  10.1016/j.biotechadv.2015.05.003
    [9] 陈思莉,易仲源,王骥,等. 淋洗-抽提技术修复柴油污染土壤及地下水案例分析[J]. 环境工程,2020,38: 178-182.
    [10] SANTOS A,FERNANDEZ J,RODRIGUEZ S,et al. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate[J]. Science of the Total Environment,2018,615: 1070-1077. doi:  10.1016/j.scitotenv.2017.09.224
    [11] 吴昊,孙丽娜,王辉,等. 活化过硫酸钠原位修复石油类污染土壤研究进展[J]. 环境化学,2015,34: 2085-2090. doi:  10.7524/j.issn.0254-6108.2015.11.2015052601
    [12] BOULAKRADECHE M O,AKRETCHE D E,CllAMESE C,et al. Enhanced electrokinetic eemediation of hydrophobic organics contaminated soils by the combination of non-ionic and ionic surfactants[J]. Electrochimica Acta,2015,174: 057-1066. doi:  10.1016/j.electacta.2015.05.147
    [13] CHENG Y,SUN H,YANG E T,et al. Distribution and bioaccessibility of polycyclic aromatic hydrocarbons in industrially contaminated site soils as affected by thermal treatment[J]. Journal of Hazardous Materials,2021,411: 125129. doi:  10.1016/j.jhazmat.2021.125129
    [14] SHI J,YANG Y,LI J,et al. A study of layered-unlayered extraction of benzene in soil by SVE[J]. Environmental Pollution,2020,263: 114219. doi:  10.1016/j.envpol.2020.114219
    [15] SHEN Z T,JIN F,DAVID O C,et al. Solidification/stabilization for soil remediation:An old technology with new vitality[J]. Environmentai Science& Technology,2019,53: 11615-11617.
    [16] LU S F,WU Y L,ZHAN C,et al. Remediation of contaminated soil and groundwater using chemical reduction and solidification/stabilization method:A case study[J]. Environmental Science and Pollution Research International,2021,28: 12766-12779. doi:  10.1007/s11356-020-11337-3
    [17] 孙兴凯,黄海,王海东,等. 大型污染场地修复过程中的问题探讨与工程实践[J]. 环境工程技术学报,2020,10(5): 883-890. doi:  10.12153/j.issn.1674-991X.20190216
    [18] CHACHINA S B,VORONKOVAN N A, BAKLANOVA O N. Biological remediation of the petroleum and diesel contaminated soil with earthworms eisenia fetida[J]. Procedia Engineering,2016,152: 122-133. doi:  10.1016/j.proeng.2016.07.642
    [19] LIN Z,BAI J,ZHEN Z,et al. Enhancing pentachlorophenol degradation by vermicomposting associated bioremediation[J]. Ecological Engineering,2016,87: 288-294. doi:  10.1016/j.ecoleng.2015.12.004
    [20] AURANG Z,LI S,WU J P,et al. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil:A critical review of research progress and prospects[J]. Science of the Total Environment,2020,740: 140145. doi:  10.1016/j.scitotenv.2020.140145
    [21] SUN M M,LIU K,ZHAO Y C,et al. Effects of bacterial-feeding nematode grazing and tea saponin addition on the enhanced bioremediation of pyrene-contaminated soil using polycyclic aromatic hydrocarbon-degrading bacterial strain[J]. Pedosphere,2017,27: 1062-1072. doi:  10.1016/S1002-0160(17)60451-X
    [22] 王拓,唐璐,栾玥,等. 小黑麦对石油污染盐碱土壤细菌群落与石油烃降解的影响[J]. 生态学报,2019,39(24): 9143-9151.
    [23] GERHARDT K E,HUANG X D,GLICK B R,et al. Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges[J]. Plant Science,2009,176: 20-30. doi:  10.1016/j.plantsci.2008.09.014
    [24] ANYASI,ORIEBE R,HARRISON I. Atagana profiling of plants at petroleum contaminated site for phytoremediation[J]. Int J Phytoremediation,2018,20(4): 352-361. doi:  10.1080/15226514.2017.1393386
    [25] 李思雯. DDT污染土壤植物修复技术的研究[D]. 沈阳: 沈阳大学, 2016.
    [26] HACENE M,JOEL F,ANTHONY V,et al. Aided phytoremediation to clean up dioxins/furans-aged contaminated soil:Correlation between microbial communities and pollutant dissipation[J]. Microorganisms,2019,7(11): 7110523. doi:  10.3390/microorganisms7110523
    [27] 李彤,李翔,李绍康,等. 蚯蚓对植物修复石油烃污染土壤的影响[J]. 环境科学研究,2019,32(4): 671-676.
    [28] 黄河,张超兰,周永信,等. 芘污染土壤的根瘤菌-植物修复效应研究[J]. 生态环境学报,2019,28(7): 1466-1472.
    [29] FENG N X,YU J,ZHAN H M,et al. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships[J]. Sci Total Environ,2017,583: 352-368. doi:  10.1016/j.scitotenv.2017.01.075
    [30] XU Y,ZHOU N Y. Microbial remediation of aromatics-contaminated soil[J]. Frontiers of Environmental Science & Engineering,2017,11(2): 1-7.
    [31] KUYUKINA M S, LVSHINA L B. Application of Rhodococcus in bioremediation of contaminated environments[M]. Germany: Springer, 2010.
    [32] YADAV S,KHAN M A,SHARMA R,et al. Potential of formulated Dyadobacter jiangsuensis strain 12851 for enhanced bioremediation of chlorpyrifos contaminated soil[J]. Ecotoxicol Environ Saf,2021,213: 112039. doi:  10.1016/j.ecoenv.2021.112039
    [33] 李想,张雪英,周俊,等. 1株铜绿假单胞菌对芘的降解特性及代谢途径[J]. 环境科学,2018,39(4): 1794-1803.
    [34] WEI Q , FAN F , YI Z , et al. Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from PAH-contaminated soil [J]. Brazilian Journal of Microbiology, 2017, 49(2): 258-268.
    [35] ZHANG Z,GUO H,SUN J,et al. Investigation of anaerobic phenanthrene biodegradation by a highly enriched co-culture,PheN9,with nitrate as an electron acceptor[J]. Journal of Hazardous Materials,2020,383: 121191. doi:  10.1016/j.jhazmat.2019.121191
    [36] HIMMELBERG A M,T B,FARMANI Z,et al. Anaerobic degradation of phenanthrene by a sulfate‐reducing enrichment culture[J]. Environmental Microbiology,2018,20(10): 3589-3600. doi:  10.1111/1462-2920.14335
    [37] LUO X,ZHANG D,ZHOU X,et al. Biodegradation of fenpropathrin by Rhodopseudomonas sp. strain PSB07-21 cultured under three different growth modes[J]. J Basic Microbiol,2019,59: 591-598. doi:  10.1002/jobm.201800490
    [38] 张波,聂麦茜,聂红云,等. 绿脓菌素促进铜绿假单胞菌NY3降解烃的作用机制[J]. 中国环境科学,2019,39(7): 3088-3093.
    [39] BAI Y,LIANG B,YUN H,et al. Combined bioaugmentation with electro-biostimulation for improved bioremediation of antimicrobial triclocarban and PAHs complexly contaminated sediments[J]. Journal of Hazardous Materials,2021,403: 123937-123937. doi:  10.1016/j.jhazmat.2020.123937
    [40] GAN X H,Y TENG L,ZHAO L,et al. Influencing mechanisms of hematite on benzo(a)pyrene degradation by the PAH-degrading bacterium Paracoccussp. Strain HPD-2:Insight from benzo(a)pyrene bioaccessibility and bacteria activity[J]. J Hazard Mater,2018,359: 348-355. doi:  10.1016/j.jhazmat.2018.07.070
    [41] BAOUNE H,HADJ-KHELIL A O E,PUCCI G,et al. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria[J]. Ecotoxicol Environ Saf,2018,147: 602-609. doi:  10.1016/j.ecoenv.2017.09.013
    [42] GUO L L,YANG W L,CHENG X,et al. Degradation of neonicotinoid insecticide acetamiprid by two different nitrile hydratases of Pseudaminobacter salicylatoxidans CGMCC 1.17248[J]. International Biodeterioration & Biodegradation,2021,157: 105141.
    [43] 冯玉雪,毛缜,吕蒙蒙. 一株DDT降解菌的筛选及其降解特性[J]. 中国环境科学,2018,38(5): 1935-1942.
    [44] 蔡慧, 郑家传, 史广宇, 等. 一株多氯联苯降解菌的筛选鉴定及降解性能研究[J]. 环境科学学报, 2016, 36(4): 1219-1225.
    [45] ZENG J,LIN X G,ZHANG J,et al. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacteriumspp. and the degradation in soil[J]. J Hazard Mater,2010,183: 718-723. doi:  10.1016/j.jhazmat.2010.07.085
    [46] DELA C,PAZGONZALEZ A,REYESESPINOSA F,et al. Analysis of phenanthrene degradation by Ascomycota fungi isolated from contaminated soil from Reynosa,Mexico[J]. Letters in Applied Microbiology,2021,72(5): 542-555. doi:  10.1111/lam.13451
    [47] AlGRAWAL N N, SHIHI S K. Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsinastrain APC5[J]. International Biodeterioration & Biodegradation,2017,122: 69-81.
    [48] 肖鹏飞,李玉文,RYUICHIRO K. Tween60和SDS强化白腐真菌修复DDT污染土壤[J]. 中国环境科学,2015,35: 3737-3743. doi:  10.3969/j.issn.1000-6923.2015.12.027
    [49] LI Q Q,LI J B,JIANG L F,et al. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil[J]. Journal of Hazardous Materials,2021,403: 123895. doi:  10.1016/j.jhazmat.2020.123895
    [50] ZHU Q H,WU Y C,ZENG J,et al. Influence of organic amendments used for benz[a]anthracene remediation in a farmland soil:Pollutant distribution and bacterial changes[J]. Journal of Soils and Sediments,2019,20: 32-41.
    [51] GUIDO C,PAOLO D,PIETRO C,et al. Pyrene and benzo(a)pyrene metabolism by an Aspergillus Terreus strain isolated from a polycylic aromatic hydrocarbons polluted soil[J]. Biodegradation,2004,15: 79-85. doi:  10.1023/B:BIOD.0000015612.10481.e6
    [52] MAHMUTOVIC M,MARGARETA V,BOH B,et al. Biodegradation of PAHs by ligninolytic fungi Hypoxylon fragiforme and Coniophora puteana[J]. Polycyclic Aromatic Compounds,2017,40: 206-213.
    [53] VARJANI S J,UOASANI V N. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514[J]. Bioresour Technol,2016,222: 195-201. doi:  10.1016/j.biortech.2016.10.006
    [54] 郑瑾,付雅丽,宋权威等. 微生物强化修复石油污染土壤的研究进展[J]. 生物工程学报,2021,37(10): 3622-3635.
    [55] GU C,WANG J,LIU S S,et al. Biogenic Fenton-like reaction involvement in cometabolic degradation of tetrabromobisphenol by Pseudomonassp. fz[J]. Environmental Science & Technology,2016,50(18): 9981-9989.
    [56] KADRI T,ROUISSI T,BRAR S K,et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes:A review[J]. J Environ Sci (China),2017,51: 52-74. doi:  10.1016/j.jes.2016.08.023
    [57] 韩慧龙,陈镇,杨健民等. 真菌-细菌协同修复石油污染土壤的场地试验[J]. 环境科学,2008,29(2): 2454-2461.
    [58] HUANG Y,ZHAN H,BHATT P,et al. Paraquat degradation from contaminated environments:Current achievements and perspectives[J]. Front Microbiol,2019,10: 1754. doi:  10.3389/fmicb.2019.01754
    [59] HARMS H,SCHLOSSER D,WICK L Y. Untapped potential:Exploiting fungi in bioremediation of hazardous chemicals[J]. Nat Rev Microbiol,2011,9: 177-192. doi:  10.1038/nrmicro2519
    [60] DAI X L,LV J,YAN G,et al. Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium[J]. Bioresour Technol,2020,309: 123305. doi:  10.1016/j.biortech.2020.123305
    [61] KUMARI B,SINGH D P. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons[J]. Ecological Engineering,2016,97: 98-105. doi:  10.1016/j.ecoleng.2016.08.006
    [62] VÁZQUEZ-NÚÑEZ E,MOLINA-GUERRERO C E,PENA-CASTROJ M,et al. Use of nanotechnology for the bioremediation of contaminants:A review[J]. Processes,2020,8: 8070826.
    [63] GUTIÉRREZ-GINÉS M J,HERNANDEZ A J,PÉREZ-LEBLIC M I,et al. Phytoremediation of soils co-contaminated by organic compounds and heavy metals:Bioassays with Lupinus luteus L. and associated endophytic bacteria[J]. Journal of Environmental Management,2014,143(10): 197-207.
    [64] XIE H,ZHU L,WANG J. Combined treatment of contaminated soil with a bacterial stenotrophomonas strain DXZ9 and ryegrass (Lolium perenne) enhances DDT and DDE remediation[J]. Environ Sci Pollut Res Int,2018,25: 31895-31905. doi:  10.1007/s11356-018-1236-7
    [65] LOUATI H,SAID O B,SOLTANI A,et al. The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure[J]. Chemosphere,2013,93: 2535-2546. doi:  10.1016/j.chemosphere.2013.09.069
    [66] WORRICH A,STRYHANYUK H,MUSAT N,et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments[J]. Nature Communications,2017,8: 15472. doi:  10.1038/ncomms15472
    [67] FURUNO S,PAZOLT K,RABE C,et al. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems[J]. Environ Microbiol,2010,12: 1391-1398.
    [68] SCHAMFUSS S,NEU T,MEER J,et al. Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria[J]. Environmental Science & Technology,2013,47: 6908-6915.
    [69] OTTO S,BANITZ T,THULLNER M,et al. Effects of facilitated bacterial dispersal on the degradation and emission of a desorbing contaminant[J]. Environmental Science & Technology,2016,50: 6320-6326.
    [70] TORRES-FARRADA G,MANZANO-LEON A M,RINEAU F,et al. Biodegradation of polycyclic aromatic hydrocarbons by native Ganodermasp. strains:Identification of metabolites and proposed degradation pathways[J]. Appl Microbiol Biotechnol,2019,103: 7203-7215. doi:  10.1007/s00253-019-09968-9
    [71] POZDNYAKOVA N,DUBROVSKAYA E,CHERNYSHOVA M,et al. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus[J]. Fungal Biol,2018,122: 363-372. doi:  10.1016/j.funbio.2018.02.007
    [72] IKE P,BIROLLI W,DOS SANTOS D M,et al. Biodegradation of anthracene and different PAHs by a yellow laccase from leucoagaricus gongylophorus[J]. Environ Sci Pollut Res Int,2019,26: 8675-8684. doi:  10.1007/s11356-019-04197-z
    [73] PAN X,LIN D,ZHENG Y,et al. Biodegradation of DDT by Stenotrophomonas sp. DDT-1:Characterization and genome functional analysis[J]. Sci Rep,2016,6: 21332. doi:  10.1038/srep21332
    [74] SEBASTIAN C A,ELIZABET A A,MARCELA L C A,et al. Proteomic insight on the polychlorinated biphenyl degrading mechanism of Pleurotus pulmonarius LBM 105[J]. Chemosphere,2021,265: 129093. doi:  10.1016/j.chemosphere.2020.129093
    [75] NIE H,NIE M,WANG L,et al. Evidences of extracellular abiotic degradation of hexadecane through free radical mechanism induced by the secreted phenazine compounds of P. aeruginosa NY3[J]. Water Res,2018,139: 434-441. doi:  10.1016/j.watres.2018.02.053
    [76] VARJANI S J. Microbial degradation of petroleum hydrocarbons[J]. Bioresour Technol,2017,223: 277-286. doi:  10.1016/j.biortech.2016.10.037
    [77] KUPPUSAMY,THAVAMANI P,MEGHARAJ M,et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings – Assessments in liquid- and slurry-phase systems[J]. International Biodeterioration & Biodegradation,2016,108: 149-157.
    [78] DUMANOGLU Y,GAGA E O,GUNGORMUS E,et al. Spatial and seasonal variations,sources,air-soil exchange,and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya,Turkey,the province of thermal power plants[J]. Sci Total Environ,2017,580: 920-935. doi:  10.1016/j.scitotenv.2016.12.040
    [79] LIANG X,ZHU L,ZHUANG S. Sorption of polycyclic aromatic hydrocarbons to soils enhanced by heavy metals:Perspective of molecular interactions[J]. Journal of Soils and Sediments,2015,16: 1509-1518.
    [80] KAEWLAOYOONG A,CHENG C Y,LIN C,et al. White rot fungus pleurotus pulmonarius enhanced bioremediation of highly PCDD/F-contaminated field soil via solid state fermentation[J]. Sci Total Environ,2020,738: 139670. doi:  10.1016/j.scitotenv.2020.139670
    [81] CHEN Z,YIN H,PENG H,et al. Identification of novel pathways for biotransformation of tetrabromobisphenol a by phanerochaete chrysosporium,combined with mechanism analysis at proteome level[J]. Sci Total Environ,2019,659: 1352-1361. doi:  10.1016/j.scitotenv.2018.12.446
    [82] HUANG L,ZHAO T,HE Y,et al. Bioremediation of oil-contaminated field by two pseudomonas aeruginosa strains[J]. Chinese Journal of biotechnology,2017,33: 957-967.
    [83] ZHUO R,FAN F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants[J]. Sci Total Environ,2021,778: 146132. doi:  10.1016/j.scitotenv.2021.146132
    [84] BIANCO F,RACE M,PAPIRIO S,et al. Removal of polycyclic aromatic hydrocarbons during anaerobic biostimulation of marine sediments[J]. Sci Total Environ,2020,709: 136141. doi:  10.1016/j.scitotenv.2019.136141
    [85] 张庆云,谢光辉,柳建设. 微生物共代谢处理印染废水研究进展[J]. 化工进展,2017,36(9): 3492-3501.
    [86] JENSEN H L. Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids[J]. Acta Agriculturae Scandinavica,1963,13: 404-412. doi:  10.1080/00015126309435665
    [87] ZAFRA G,TAYLOR T D,ABSALON A E,et al. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium[J]. J Hazard Mater,2016,318: 702-710. doi:  10.1016/j.jhazmat.2016.07.060
    [88] WANG B,TENG Y,XU Y,et al. Effect of mixed soil microbiomes on pyrene removal and the response of the soil microorganisms[J]. Sci Total Environ,2018, 640-641: 9-17.
    [89] KOSHLAF E,SHAHSAVARI E,HALEYUR N,et al. Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation[J]. Geoderma,2019,338: 216-225. doi:  10.1016/j.geoderma.2018.12.001
    [90] GU H,YAN K,YOU Q,et al. Soil indigenous microorganisms weaken the synergy of Massiliasp. WF1 and phanerochaete chrysosporium in phenanthrene biodegradation[J]. Sci Total Environ,2021,781: 146655. doi:  10.1016/j.scitotenv.2021.146655
    [91] MA X,LI X,LIU J,et al. Soil microbial community succession and interactions during combined plant/white-rot fungus remediation of polycyclic aromatic hydrocarbons[J]. Sci Total Environ,2021,752: 142224. doi:  10.1016/j.scitotenv.2020.142224
    [92] DACCÒ C,GIROMETTA C,ASEMOLOYE M D,et al. Key fungal degradation patterns,enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils:A review[J]. International Biodeterioration & Biodegradation,2020, 147: 104866.
    [93] CHEN S,PENG J,DUAN G. Enrichment of functional microbes and genes during pyrene degradation in two different soils[J]. Journal of Soils and Sediments,2015,16: 417-426.
    [94] KUPPUSAMY S,THAVAMANI P,MEGHARAJ M,et al. In-situ remediation approaches for the management of contaminated sites:A comprehensive overview[J]. Rev Environ Contam Toxicol,2016,18: 1-115.
    [95] LARA-MORENO A,MORILLO E,MERCHAN F,et al. A comprehensive feasibility study of effectiveness and environmental impact of PAH bioremediation using an indigenous microbial degrader consortium and a novel strain Stenotrophomonas maltophilia CPHE1 isolated from an industrial polluted soil[J]. J Environ Manage,2021,289: 112512. doi:  10.1016/j.jenvman.2021.112512
    [96] MADRID F,RUBIO-BELLIDO M,VILLAVERDE J,et al. Natural attenuation of fluorene and pyrene in contaminated soils and assisted with hydroxypropyl-beta-cyclodextrin. Effect of co-contamination[J]. Sci Total Environ,2016,571: 42-49. doi:  10.1016/j.scitotenv.2016.07.110
    [97] CAUDURO G P,LEAL A L,MARMITT M,et al. New benzo(a)pyrene-degrading strains of the burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant[J]. Environ Monit Assess,2021,163: 08952.
    [98] ZENG J,ZHU Q,WU Y,et al. Oxidation of benzo[a]pyrene by laccase in soil enhances bound residue formation and reduces disturbance to soil bacterial community composition[J]. Environ Pollut,2018,242: 462-469. doi:  10.1016/j.envpol.2018.06.075
    [99] WANG T N,LU L,WANG J Y,et al. Enhanced expression of an industry applicable cota laccase from bacillus subtilis in Pichia pastoris by non-repressing carbon sources together with pH adjustment:Recombinant enzyme characterization and dye decolorization[J]. Process Biochemistry,2015,50: 97-103. doi:  10.1016/j.procbio.2014.10.009
    [100] LEE A H,KANG C M,LEE Y M,et al. Heterologous expression of a new manganese-dependent peroxidase gene from Peniophora incarnata KUC8836 and its ability to remove anthracene in saccharomyces cerevisiae[J]. J Biosci Bioeng,2016,122: 716-721. doi:  10.1016/j.jbiosc.2016.06.006
    [101] ZHANG H,ZHANG X,GENG A. Expression of a novel manganese peroxidase from cerrena unicolor BBP6 in Pichia pastoris and its application in dye decolorization and PAH degradation[J]. Biochemical Engineering Journal,2020, 153: 107402.
    [102] SATO T,IRIE T,YOSHINO F. Heterologous expression of the Pleurotus ostreatus MnP3 gene by the laccase gene promoter in lentinula edodes[J]. Bioscience,Biotechnology and Biochemistry,2017,81: 1553-1556.
    [103] BOONCHAN S,BRITZ M L. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures[J]. Applied and Environmental Microbiology,2020,66: 1007-1019.
    [104] KOTTERMAN M,VIS E H,FIELD J A. successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkanderasp. strain BOS55 and indigenous microflora[J]. Applied and Environmental Microbiology,1998,64: 2853-2858. doi:  10.1128/AEM.64.8.2853-2858.1998
    [105] INNANGI M,NIRO E,ASCOLI R D,et al. Effects of olive pomace amendment on soil enzyme activities[J]. Applied Soil Ecology,2017,119: 242-249. doi:  10.1016/j.apsoil.2017.06.015
    [106] EZENNE G I,NWOKE O A,EZIKPE D E,et al. Use of poultry droppings for remediation of crude-oil-polluted soils:Effects of application rate on total and poly-aromatic hydrocarbon concentrations[J]. International Biodeterioration & Biodegradation,2014,92: 57-65.
    [107] ALDAS-VARGAS A,VOOREN T,RIJNAARTS H,et al. Biostimulation is a valuable tool to assess pesticide biodegradation capacity of groundwater microorganisms[J]. Chemosphere,2021,280: 130793. doi:  10.1016/j.chemosphere.2021.130793
  • [1] 雷雯, 解龙, 宋明鸣.  酶催化法测定13C标记尿素同位素丰度, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2023.04.001
    [2] 吴文雨, 唐剑锋, 郑思俊, 柯紫妍, 耿春女.  城市源生物炭对城市土壤溶解性有机质及重金属有效态的影响, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2023.03.008
    [3] 黄永军, 徐从海, 严冬冬, 薛建良.  地下水污染及修复技术的研究浅析, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.02.004
    [4] 余锦涛, 张长波, 徐剑锋, 宋盘龙, 盛健, 陆锟, 廖志强, 商照聪.  长三角某石油烃污染场地地下水原位电阻加热修复技术工程应用, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.01.011
    [5] 姜欣彤, 毕东苏.  污水处理厂脱水污泥有机污染物含量调查及处置方式评估, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.04.005
    [6] 滕庭庭, 梁继东.  PAHs降解功能菌的识别与生物强化修复PAHs污染土壤研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.01.003
    [7] 刘五星, 侯金玉, 王贝贝.  煤化工场地有机污染土壤生物修复研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.01.002
    [8] 李婷婷, 吴迪, 辛亮, 王恩彪, 赵紫钰, 彭湃.  石油污染土壤电动-微生物修复技术研究, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.010
    [9] 刘维涛, 李剑涛, 郑泽其, 李法云.  微生物固定化技术修复石油烃污染土壤, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.007
    [10] 李法云, 吝美霞, 李晓桐, 王玮, 王效举.  生物炭基复合材料制备及其在有机污染环境修复中的应用, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.003
    [11] 张玉玲, 王吉利, 刘婷, 白雪, 石宇佳, 丁杨, 宋和威.  土著微生物原位修复典型有机污染地下水研究展望, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.005
    [12] 石丽芳, 吝美霞, 李法云, 高明, 王玮, 周纯亮.  生物炭固定化微生物对石油烃污染土壤酶活性与修复效果的影响, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.013
    [13] “有机污染场地土壤修复”专辑导读, 应用技术学报.
    [14] 李政, 顾贵洲, 李法云.  耐低温石油烃降解菌的筛选及降解性能研究, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.011
    [15] 许科伟, 顾磊, 郑旭莹, 王彪, 郭鹏.  化学氧化强化生物堆修复石油污染土壤研究, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.009
    [16] 周启星, 展海银.  石油及石化污染场地生物修复技术进展与展望, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.001
    [17] 章亭洲, 徐志伟, 张建泽, 朱廷恒.  固态发酵生物反应器及其在有机污染物降解菌扩繁中的应用, 应用技术学报. doi: 10.3969/j.issn.1004-3810.2021.04.012
    [18] 居佃兴, 蒋晓妹, 殷建, 何琳涛, 陶绪堂.  有机-无机复合钙钛矿单晶材料的研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2019.02.001
    [19] 史军霞, 崔鹏辉, 张建勇.  锰基金属有机框架材料催化苯甲醇氧化反应, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2019.02.006
    [20] 郑婷婷, 冯恩铎, 田阳.  端粒酶活性检测研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2018.01.001
  • 加载中
图(3) / 表 (3)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  103
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 刊出日期:  2021-12-16

目录

    /

    返回文章
    返回