高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金薄膜的制备和韧性优化措施

张而耕 王亚琨 梁丹丹 陈强 周琼 黄彪

张而耕,王亚琨,梁丹丹,等. 非晶合金薄膜的制备和韧性优化措施[J]. 应用技术学报,2024,24(1):63-71. doi:  10.3969/j.issn.2096-3424.2024.01.006
引用本文: 张而耕,王亚琨,梁丹丹,等. 非晶合金薄膜的制备和韧性优化措施[J]. 应用技术学报,2024,24(1):63-71. doi:  10.3969/j.issn.2096-3424.2024.01.006
ZHANG Ergeng, WANG Yakun, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Fabrication and toughness optimization methods of metallic glass films[J]. J. Technol, 2024, 24(1): 63-71. doi: 10.3969/j.issn.2096-3424.2024.01.006
Citation: ZHANG Ergeng, WANG Yakun, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Fabrication and toughness optimization methods of metallic glass films[J]. J. Technol, 2024, 24(1): 63-71. doi: 10.3969/j.issn.2096-3424.2024.01.006

非晶合金薄膜的制备和韧性优化措施

doi: 10.3969/j.issn.2096-3424.2024.01.006
基金项目: 上海市优秀技术带头人计划项目(22XD1434500);上海应用技术大学引进人才基金项目(YJ2022-31);上海应用技术大学协同创新基金项目(XTCX2022-24)资助
详细信息
    作者简介:

    张而耕(1973-),男,教授,博士,主要研究方向为超硬纳微米PVD涂层、机械制造和材料失效分析。E-mail:zhangeg@yeah.net

    通讯作者:

    梁丹丹(1987-),女,讲师,博士,主要研究方向为非晶合金、涂层材料和表面防护。 E-mail:liang.d.d@163.com

  • 中图分类号: TG132

Fabrication and toughness optimization methods of metallic glass films

  • 摘要: 由于原子排列短程有序、长程无序,且不具有晶界、位错、第二相等典型晶体缺陷,非晶合金表现出高强度、高硬度以及优异的耐磨性、耐腐蚀性等优异性能。但是非晶合金的本征脆性以及有限的玻璃形成能力极大地限制了其工业应用,非晶合金薄膜的韧性优化便成了当今研究的热点问题。针对非晶合金薄膜的制备以及韧性优化措施进行综述,同时对非晶合金薄膜日后的发展趋势及未来的研究趋势进行了展望。
  • 图  1  非晶合金的TEM图像[2]

    Figure  1.  The TEM image of metallic glasses[2]

    图  2  (a) Fe基BMG的显微硬度和抗压强度曲线[2];(b)Fe基BMG和316L合金在不同电解质溶液中的动电位极化曲线[4]

    Figure  2.  (a)Microhardness and compressive strength of Fe-based BMG[2], (b)potentiodynamic polarization curves of Fe-based BMG and 316L alloy in various electrolyte solutions[4]

    图  3  (a) S1、S2和S3非晶合金的压缩薄片;(b) S2非晶合金弯曲成不同形状,表现出特殊的变形能力;(c) S2非晶合金在不同标称应变下形变[13]

    Figure  3.  (a) Compressed sheets of S1, S2 and S3 amorphous alloys, (b) S2 amorphous alloy bends into different shapes, showing special deformation ability, (c) S2 amorphous alloy deforms under different nominal strains[13]

    图  4  Cu-Zr磁控溅射实验装置

    Figure  4.  Cu-Zr magnetron sputtering

    图  5  TiCuNi薄膜的AFM图像[24]

    Figure  5.  AFM image of TiCuNi thin film[24]

    图  6  Cu-Zr合金薄膜表面形貌 (a) 磁控溅射; (b) 多弧离子镀[22]

    Figure  6.  Surface morphology of Cu-Zr thin films (a) magnetron sputtering, (b) multi-arc ion plating[22]

    图  7  PLD沉积技术的原理图[25]

    Figure  7.  Schematic representation of the PLD deposition technique[25]

    图  8  (a) Fe47Cr20Mo10C15B6Y2和(b) Fe45Cr20Mo10W2C15B6Y2 BMG压缩试验后铸态玻璃棒材的断口形貌

    Figure  8.  Fracture morphology of as-cast glassy rods after compressive tests on the (a) Fe47Cr20Mo10C15B6Y2 and (b) Fe45Cr20Mo10W2C15B6Y2 BMG

  • [1] DIYATMIKA W,CHU J P,KACHA B T,et al. Thin film metallic glasses in optoelectronic,magnetic,and electronic applications:a recent update[J]. Current Opinion in Solid State and Materials Science,2015,19(2): 95-106. doi:  10.1016/j.cossms.2015.01.001
    [2] LIANG D D,WEI X S,CHANG C T,et al. Effect of W addition on the glass forming ability and mechanical properties of Fe-based metallic glass[J]. Journal of Alloys and Compounds,2018(731): 1146-1150.
    [3] LIANG D D,ZHOU Y H,LIU X D,et al. Wettability and corrosion performance of arc-sprayed Fe-based amorphous coatings[J]. Surface and Coatings Technology,2022(433): 128129.
    [4] LIANG D D,WEI X S,WANG Y,et al. Electrochemical behaviors and passive film properties of Fe-based bulk metallic glass in Cl-containing acetic acid solutions under high temperature[J]. Journal of Alloys and Compounds,2018(766): 964-972.
    [5] KLEMENT W,WILLENS R H,DUWEZ P O L. Non-crystalline structure in solidified gold–silicon alloys[J]. Nature,1960,187(4740): 869-870.
    [6] INOUE A,ZHANG T,MASUMOTO T. Al–La–Ni amorphous alloys with a wide supercooled liquid region[J]. Materials Transactions JIM,1989,30(12): 965-972.
    [7] INOUE A,TAKEUCHI A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia,2011,59(6): 2243-2267. doi:  10.1016/j.actamat.2010.11.027
    [8] INOUE A,NEGISHI T,KIMURA H M,et al. High packing density of Zr-and Pd-based bulk amorphous alloys[J]. Materials Transactions JIM,1998,39(2): 318-321.
    [9] ZHAO K,WANG N,LI S,et al. Corrosion behavior of Ni62Nb33Zr5 bulk metallic glasses after annealing and cryogenic treatments[J]. ChemPhysMater,2023,2(1): 58-68.
    [10] SARAC B,IVANOV Y P,CHUVILIN A,et al. Origin of large plasticity and multiscale effects in iron-based metallic glasses[J]. Nature Communications,2018,9(1): 1333. doi:  10.1038/s41467-018-03744-5
    [11] LEWANDOWSKI J J,WANG W H,GREER A L. Intrinsic plasticity or brittleness of metallic glasses[J]. Philosophical Magazine Letters,2005,85(2): 77-87. doi:  10.1080/09500830500080474
    [12] WANG W H. Correlations between elastic moduli and properties in bulk metallic glasses[J]. Journal of Applied Physics,2006,99(9): 093506. doi:  10.1063/1.2193060
    [13] LIU Y H,WANG G,WANG R J,et al. Super plastic bulk metallic glasses at room temperature[J]. Science,2007,315(5817): 1385-1388. doi:  10.1126/science.1136726
    [14] LI M X,ZHAO S F,LU Z,et al. High-temperature bulk metallic glasses developed by combinatorial methods[J]. Nature,2019,569(7754): 99-103. doi:  10.1038/s41586-019-1145-z
    [15] LIU M C,LEE C J,LAI Y H,et al. Microscale deformation behavior of amorphous/ nanocrystalline multilayered pillars[J]. Thin Solid Films,2010,518(24): 7295-7299.
    [16] GUO W,JAGLE E A,CHOI P P,et al. Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates[J]. Physical Review Letters,2014,113(3): 035501. doi:  10.1103/PhysRevLett.113.035501
    [17] KIMURA H,MASUMOTO T. A model of the mechanics of serrated flow in an amorphous alloy[J]. Acta Metallurgica,1983,31(2): 231-240. doi:  10.1016/0001-6160(83)90100-1
    [18] TAO P , ZHANG W , CHEN Y,et al. Effect of high temperature deformation on the deformation behavior and thermodynamic properties of a Zr-based bulk amorphous alloy[J]. Thin Solid Films,2022,907: 164450. doi:  10.1016/j.tsf.2010.04.096
    [19] SUN X,WU D,ZOU L,et al. Dislocation-induced stop-and-go kinetics of interfacial transformations[J]. Nature,2022,607(7920): 708-713. doi:  10.1038/s41586-022-04880-1
    [20] MA C F,HUANG P,XU K W,et al. Free volume gradient effect on shear banding behavior in CuZr/CuZr multilayers[J]. Thin Solid Films,2018(666): 48-53.
    [21] KONTIS P,KöHLER M,EVERTZ S,et al. Nano-laminated thin film metallic glass design for outstanding mechanical properties[J]. Scripta Materialia,2018(155): 73-77.
    [22] WEI X,YING C,WU J,et al. Fabrication,corrosion,and mechanical properties of magnetron sputtered Cu-Zr-Al metallic glass thin film[J]. Materials,2019,12(24): 4147. doi:  10.3390/ma12244147
    [23] LIU X,ZHOU J,WANG J,et al. Novel Ta46.5W35Co18.5 thin film metallic glass with excellent corrosion resistance,high hardness and good thermal stability[J]. Journal of Alloys and Compounds,2022(890): 161874.
    [24] KAUSHIK N,SHARMA P,AHADIAN S,et al. Metallic glass thin films for potential biomedical applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2014,102(7): 1544-1552. doi:  10.1002/jbm.b.33135
    [25] DAS S,SANTOS-ORTIZ R,ARORA H S,et al. Electromechanical behavior of pulsed laser deposited platinum-based metallic glass thin films[J]. Physica Status Solidi (a),2016,213(2): 399-404. doi:  10.1002/pssa.201532639
    [26] 陈传忠, 包全合, 姚书山, 等. 脉冲激光沉积技术及其应用[J]. 2003, 27(5): 443-446.
    [27] HUFNAGEL T C,SCHUH C A,FALK M L. Deformation of metallic glasses:recent developments in theory,simulations,and experiments[J]. Acta Materialia,2016(109): 375-393.
    [28] GEORGARAKIS K,ALJERF M,LI Y,et al. Shear band melting and serrated flow in metallic glasses[J]. Applied Physics Letters,2008,93(3): 031907. doi:  10.1063/1.2956666
    [29] ZíTEK M,ZEMAN P,KOTRLOVá M,et al. Impact of Al or Si addition on properties and oxidation resistance of magnetron sputtered Zr-Hf-Al/Si-Cu metallic glasses[J]. Journal of Alloys and Compounds,2019(772): 409-417.
    [30] CHU J P,LIU C T,MAHALINGAM T,et al. Annealing-induced full amorphization in a multicomponent metallic film[J]. Physical Review B,2004,69(11): 113410. doi:  10.1103/PhysRevB.69.113410
    [31] APREUTESEI M,STEYER P,BILLARD A,et al. Zr–Cu thin film metallic glasses:an assessment of the thermal stability and phases’ transformation mechanisms[J]. Journal of Alloys and Compounds,2015(619): 284-292.
    [32] ACHACHE S,SANCHETTE F. Effect of tantalum addition on properties of Cu–Zr–based thin film metallic glasses (TFMGs)[J]. Coatings,2020,10(6): 515. doi:  10.3390/coatings10060515
    [33] ETIEMBLE A,DER LOUGHIAN C,APREUTESEI M,et al. Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications[J]. Journal of Alloys and Compounds,2017(707): 155-161.
    [34] LAI J J,LIN Y S,CHANG C H,et al. Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications[J]. Applied Surface Science,2018(427): 485-495.
    [35] OAK J J,LOUZGUINE-LUZGIN D V,INOUE A. Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial,and investigation of its mechanical properties,corrosion,and crystallization behavior[J]. Journal of Materials Research,2011,22(5): 1346-1353.
    [36] OAK J J,LOUZGUINE-LUZGIN D V,INOUE A. Investigation of glass-forming ability,deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants[J]. Materials Science and Engineering:C,2009,29(1): 322-327.
    [37] YU C C,LEE C M,CHU J P,et al. Fracture-resistant thin-film metallic glass:ultra-high plasticity at room temperature[J]. APL Materials,2016,4(11): 116101. doi:  10.1063/1.4966932
    [38] HE S,LI Y,LIU L,et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance[J]. Science Advances,2020,6(15): eaaz8423. doi:  10.1126/sciadv.aaz8423
    [39] PARK E S,LEE J Y,KIM D H,et al. Correlation between plasticity and fragility in Mg-based bulk metallic glasses with modulated heterogeneity[J]. Journal of Applied Physics,2008,104(2): 023520. doi:  10.1063/1.2955715
    [40] KIM D,KIM W,PARK E,et al. Phase separation in metallic glasses[J]. Progress in Material Science,2013,58(8): 1103-1172. doi:  10.1016/j.pmatsci.2013.04.002
    [41] HOWE J M,SAKA H. In situ transmission electron microscopy studies of the solid–liquid interface[J]. MRS Bulletin,2004,29(12): 951-957. doi:  10.1557/mrs2004.266
    [42] GLEITER H. Our thoughts are ours,their ends none of our own:are there ways to synthesize materials beyond the limitations of today?[J]. Acta Materialia,2008,56(19): 5875-5893. doi:  10.1016/j.actamat.2008.08.028
    [43] FANG J,VAINIO U,PUFF W,et al. Atomic structure and structural stability of Sc75Fe25 nanoglasses[J]. Nano Letters,2012,12(1): 458-463. doi:  10.1021/nl2038216
    [44] ŞOPU D,ALBE K,RITTER Y,et al. From nanoglasses to bulk massive glasses[J]. Applied Physics Letters,2009,94(19): 191911. doi:  10.1063/1.3130209
    [45] GU H,LIU C,YUAN F,et al. Deformation twinning in octahedron-based face-centered cubic metallic structures: localized[J]. Journal of Materials Science and Technology,2022(34): 74-78.
    [46] ZHOU H F,ZHONG C,CAO Q P,et al. Non-localized deformation in metallic alloys with amorphous structure[J]. Acta materialia,2014,68: 32-41. doi:  10.1016/j.actamat.2014.01.003
    [47] ZHONG C,ZHANG H,CAO Q,et al. Deformation behavior of metallic glasses with shear band like atomic structure:a molecular dynamics study[J]. Scientific Reports,2016,6(1): 30935. doi:  10.1038/srep30935
    [48] LIANG D, LIU X, ZHOU Y, et al. Effects of annealing below glass transition temperature on the wettability and corrosion performance of Fe-based amorphous coatings[J]. Acta Metallurgica Sinica (English Letters), 2022: 1-11.
    [49] LIANG D,TSENG J C,LIU X,et al. Investigation of the structural heterogeneity and corrosion performance of the annealed Fe-based metallic glasses[J]. Materials,2021,14(4): 929. doi:  10.3390/ma14040929
    [50] LIANG D,MA J,CAI Y,et al. Characterization and elevated-temperature tribological performance of AC–HVAF-sprayed Fe-based amorphous coating[J]. Surface and Coatings Technology,2020(387): 125535.
    [51] CHOU H S,DU X H,LEE C J,et al. Enhanced mechanical properties of multilayered micropillars of amorphous ZrCuTi and nanocrystalline Ta layers[J]. Intermetallics,2011,19(7): 1047-1051. doi:  10.1016/j.intermet.2011.03.015
    [52] ZHANG J Y,LIU Y,CHEN J,et al. Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers[J]. Materials Science and Engineering:A,2012(552): 392-398.
    [53] HUANG H S,PEI H J,CHANG Y C,et al. Tensile behaviors of amorphous-ZrCu /nanocrystalline-Cu multilayered thin film on polyimide substrate[J]. Thin Solid Films,2013(529): 177-180.
    [54] GLUSHKO O,GAMMER C,WENIGER L M,et al. Morphology of cracks and shear bands in polymer-supported thin film metallic glasses[J]. Materials Today Communications,2021(28): 102547.
    [55] SCHUH C A,HUFNAGEL T C,RAMAMURTY U. Mechanical behavior of amorphous alloys[J]. Acta Materialia,2007,55(12): 4067-4109. doi:  10.1016/j.actamat.2007.01.052
    [56] KIM J Y,JANG D,GREER J R. Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses[J]. Advanced Functional Materials,2011,21(23): 4550-4554. doi:  10.1002/adfm.201101164
    [57] KABAN I,JóVáRI P,KOKOTIN V,et al. Local atomic arrangements and their topology in Ni–Zr and Cu–Zr glassy and crystalline alloys[J]. Acta Materialia,2013,61(7): 2509-2520. doi:  10.1016/j.actamat.2013.01.027
    [58] LANGER J. Shear-transformation-zone theory of deformation in metallic glasses[J]. Scripta Materialia,2006,54(3): 375-379. doi:  10.1016/j.scriptamat.2005.10.005
    [59] ZHOU Q,LUO D,YE W,et al. Mechanical and tribological behaviors of metallic glass/ graphene film with a laminated structure[J]. Composites Part A:Applied Science and Manufacturing,2022(155): 106851.
  • [1] 韩生, 王媛, 蔺华林, 晏金灿, 薛原, 王宸宸.  医用钛合金表面改性及生物摩擦学性能研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2024.01.002
    [2] 徐家跃, 张彦, 田甜, 陈媛芝, 申慧, 肖学峰, 熊正烨, 李永攀, 马云峰.  多功能硅酸铋晶体的生长与掺杂, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2024.01.001
    [3] 张海英.  掺垃圾焚烧飞灰制烧结砖物相及相变研究, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2023.03.007
    [4] 王卿, 武书凡, 钱露, 潘尚可, 潘建国.  离子掺杂调节钙钛矿单晶光电性能的研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2023.01.002
    [5] 乔慧, 郝建淦, 洪昕, 郑晓虹.  Y掺杂ZnO复合材料的制备及气敏性能, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2023.03.004
    [6] 徐珂, 罗彬彬, 陈昆峰, 薛冬峰.  稀土离子掺杂钙钛矿纳米材料的光学性质及光电应用研究, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2023.01.003
    [7] 赫崇君, 邓晨光, 朱星蓉, 李自强, 高慧芳, 路元刚, 李千.  准同型相界钛酸铋钠钡晶体的制备及光学性能, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.04.001
    [8] 王西翔, 尹潘, 曹庆楼, 陈勇, 邹军.  钙钛矿量子点B位掺杂研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.04.009
    [9] 李晓青, 徐军, 魏立群, 付斌, 徐怀君.  铜铝复合轧制结合界面速度场分析, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.02.005
    [10] 王雅荣, 房诗玉, 房永征, 孙常鸿, 叶振华, 刘玉峰.  碲镉汞与钙钛矿量子点薄膜异质结的界面电子态及其荧光特性, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2022.03.001
    [11] 苏志海, 孙秀玉, 杨彤, 王振卫.  镁合金的微弧氧化:轻量化材料评述, 应用技术学报. doi: 10.3969/j.issn.2096-3424.20069
    [12] 梁丹丹, 张而耕, 黄彪, 陈强, 周琼.  热喷涂制备Fe基非晶涂层的磨损行为研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2021.072
    [13] 于晓庆.  肺腺癌相关长链非编码RNA生物标志物识别, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2020.04.012
    [14] 张地伟, 吴永真, 朱为宏.  金属离子掺杂提升全无机CsPbX3钙钛矿太阳能电池稳定性研究进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2020.02.001
    [15] 鲁青, 邹军, 石明明, 朱雨轩, 陈跃, 翟鑫梦, 陈俊峰, 杨磊, 杨忠, 徐慧.  倒装LED芯片共晶焊接性能研究, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2020.04.002
    [16] 刘艳, 秦文超, 张登科, 冯黎伟, 吴磊.  金属钛离子掺杂对LiNi0.8Co0.1Mn0.1O2正极材料的改性研究, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2020.04.013
    [17] 张而耕, 黄彪, 陈强, 周琼, 李朝明, 潘文高, 林荣川, 陈刚.  微纳米超硬TiAlSiN涂层的研究与应用进展, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2020.02.002
    [18] 梁肖肖, 童健, 马昕迪, 雷云, 陈媛芝, 武英, 徐家跃.  镍基高温合金单晶的生长和氧化行为, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2019.02.003
    [19] 李晟, 张建华, 楼志斌, 殷录桥.  基于复合封装薄膜的水汽透过率测试系统研究, 应用技术学报. doi: 10.3969/j.issn.2096-3424.2017.01.006
    [20] 邵霞, 张志丽, 杨欣, 张睿, 陈东辉.  Ce、Nd双掺杂TiO2/C复合材料的制备及性能, 应用技术学报. doi: 10.3969/ji.ssn.2096-3424.2017.01.009
  • 加载中
图(8)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 网络出版日期:  2024-01-26
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回